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4 Serial ferroresonance in voltage transformers

SUMMARY

1. DESCRIPTION OF THE 
 SERIAL FERRORESONANCE
 PHENOMENON

This article describes the serial ferroresonance 
phenomenon in the cases of fundamental and 
subharmonic ferroresonance. Starting from the 
complete R-L-C circuit in ferroresonance, the 
minimum network voltage which sustains the 
phenomenon is determined. 

In the case of fundamental ferroresonance, the 
results of various laboratory experiments are 
compared with the carried out calculations. 
These points are immediately applicable to 
the case of inductive and capacitive voltage 
transformers.

In a serial R-L-C circuit, for an applied voltage, 
a constant current always fl ows through the 
circuit, since its components are characterized 
by being constant and therefore non-variable 
with current, voltage or time.

However, if we introduce as a parameter of 
the same circuit a self inductance (1) variable 
with the current or the voltage in its terminals, 
we fi nd ourselves with the possibility that a 
sustained range of currents and voltages may 
be produced within the circuit totally di� erent 
from that expected for a determined supply 
voltage.

The classic method of explaining the 
phenomenon [1], although it gives su�  cient 

initial approximation, doesn’t lead to real 
understanding of the phenomenon and 
its mathematical quantifi cation because 
it doesn’t take into account that the self-
induction is a complex transference curve 
and not the direct quotient between values of 
voltage and current in a continuous rating.

In fi g. 1 we have the serial R-L-C circuit and the 
magnetic characteristic of self-inductance.

The appearance of the condition of 
ferroresonance in the circuit, starting from 
a permanent sine-wave condition, is always 
due to a variation in the supply voltage to 
the circuit, which may return to the original 
conditions but maintaining the ferroresonance.

 › Fig. 1
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1. DESCRIPCIÓN DEL FENÓMENO DE LA FERRORRESONANCIA SERIE

Fig. 2 shows the voltage and current wave 
forms in the di� erent elements of an R-L-C 
serial circuit. From this fi gure we can work 
out the following: a circuit in sustained 
ferroresonance there are 2 transient conditions
every half-cycle of the network, and they are 
synchronized by the sine-wave current which 
circulates through the circuit.

The inductance goes sharply from the L1 to the 
Lm value and vice versa, with two conditions of 
charge and discharge in opposite directions 
of C through it.

When the discharge and charge current in 
opposite directions of C through Lm reachs 
the value a', then L = Lm becomes L = L1. At this 
point the capacitance C discharges through L1 
with a transient current in semi-sine wave and 
frequency equal to:

_____________

2π     L1 C

 ƒ0 = 
1

When the transient current of this discharge 
approaches to zero (t= π/ω0)) then for current 
values lower than a', the self-inductance 
becomes L = Lm. The capacitor C charged in 
the opposite direction meets a very large Lm 
and an oscillation of frequency:

_____________

2π    Lm C

 ƒm = 
1

much lower than the one before is produced.

The current of this transient condition increases 
very slowly and hardly any voltage variation 
can be appreciated in the capacitance.

When the current of this slow transient added 
to the sinewave current of the network reaches 
the value a' then L = L1 and the phenomenon 
repeats indefi nitely.

The following must be taken into account:

When L = Lm at the network frequency we fi nd 
out that

Lm ω >> _______
1

C ω 

and therefore the circuit is very inductive. 
This implies that a weak sine-wave current 
of an inductive nature will circulate through 
the circuit in the intervals in which the 
selfi nductance is not saturated, and will make 
nearly all the line voltage appear as rippled 
over the self-inductance voltage.

 › Fig. 2
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2. FUNDAMENTAL AND 
 SUBHARMONIC 
 FERRORESONANCE
2.1. FUNDAMENTAL 2.2. SUBHARMONIC
From what has been described in the section 
above, we can work out the conditions which 
a R-C-L circuit must fulfi ll in order to maintain 
a fundamental ferroresonance:

a. The characteristic oscillation frequency of 
the L1-C circuit must be higher than that 
of the network (usually much higher), that 
is to say:

____________

L1 · C

1 ≅  ω0 > ω

This is the same as saying that at the 
network frequency, the L1-C circuit should 
be capacitive, that’s to say:

____________1 >  L1 ωω · C

b. The characteristic oscillation frequency 
of the Lm-C circuit must be lower than 
that of the network, since in this way the 
phenomenon is synchronized every half-
cycle. If ωm>ω  then it is impossible to 
synchronize it. That is:    

____________

Lm C

1 =  ωm < ω

This is equivalent to saying that at the 
network frequency, the Lm-C circuit must 
be inductive and therefore:

____________1 <  Lm ωC ω

c. The discharge of C through L1 must be in 
an oscillating way, for which the circuit 
must be under-damped, that is:

____L1

C
R < Rc = 2

In this way we guarantee that the current 
passes through zero, with a ωo>ω, and L1 is 
converted to the value of Lm and vice versa.

The network voltage must be enough to 
provide the energy lost in the resistor R while 
in communication In addition we assume 
that the losses in R because of the sine-wave 
current of the network or the pulse current 
ωm are neglected due to their low values.

In fi g. 3 we can see the wave shapes of 
voltages and currents in the circuit in the case 
of subharmonic ferroresonance.

The subharmonic ferroresonance is produced 
when the nonsaturated self-inductance Lm 
together with the capacitance C of the circuit 
have their own oscillation frequency of fm, 
lower than that of the subharmonic which 
may be produced.

In this way, the oscillating current of frequency 
fm and the fundamental component added 
together may be able to saturate the self-
inductance synchonicity every 1.5 network 
cycles, 2.5 cycles, 3.5 cycles, etc., that’s to say, 
with an oscillation period of 3 cycles, 5 cycles, 
7 cycles, etc. (3rd subharmonic,
5th subharmonic, 7th subharmonic, etc.).

The case above on fundamental ferroresonance 
is in fact the same, but synchronized every 1/2 
cycle.

 › Fig. 3
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2. FUNDAMENTAL AND SUBHARMONIC FERRORESONANCE

Figure 3 shows that if the free oscillation 
frequency

____________

Lm C

1

is, for example, lower than the 9th 
subharmonic, ferroresonances of the 1st 
subharmonic (fundamental) may appear, then 
3rd subharmonic and 5th subharmonic ones, 
followed by the 7th and even the 9th ones, but 
never the 11th, that is, at frequencies lower than 
that of free oscillation:

____________

Lm C

1

Subharmonics increase their periods (orders) 
while network voltage decreases.

From fi gure 3 we can deduce the circuit 
conditions required for the existence of 
subharmonic ferroresonance:

a. The characteristic oscillation frequency of 
the circuit L1-C must be higher than that of 
the considered subharmonic, i.e.:

____________

L1 C

1 >  ωsubharmonicω0 =

or just at the frequency of the considered 
subharmonic the circuit L1-C must be 
capacitive:

_______

C ____

n

ω
____

n

ω1 >  L1

where n = order of the considered 
subharmonic.

b. The characteristic oscillation frequency of 
the circuit Lm-C must be lower than that 
of the considered subharmonic so that the 
phenomenon can be synchronized, i.e.:

____________

Lm C

1 <  ωconsidered subharmonic

This is equivalent to saying that at the 
frequency of the considered subharmonic 
the circuit Lm-C must be inductive:

_______

C ____

n

ω
____

n

ω1 >  Lm

where n = order of the considered 
subharmonic.

c. The discharge of C through L1 must be 
oscillating, for which the circuit must be 
underdamped, that is to say:

____L1

C
R < Rc = 2

In this way, we guarantee that the current 
passes through zero, with a ω0>ωsubharmonic, 
and L1 is converted to the value Lm and vice 
versa.

d. The network voltage must be enough to 
provide the energy lost in the resistance R 
while commutation. In addition we assume 
that the losses in R because of the sinewave 
current of the network or the pulse current 
____

n

ω
 
are neglected due to their low values.
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3. CALCULATIONS AND     
 EQUATIONS
The equilibrium equations for the maintenance 
of the fundamental and the subharmonic 
ferroresonance are shown below. 

Primarily, we assume that the core has no 
losses and we check the infl uence of the serial 
resistance r1. (fi g.4).

The initial hypothesis are as follows:

a. The excitation sine-wave current is 
insignifi cant compared to the impulses 
while the transients.   
 

b. Self-inductance has 2 values: Lm when it is 
not saturated, and L1 when it is saturated. 
Also when the self-inductance value is Lm, 
it is so large that it prevents the capacitors 
from discharging.

The equations to be applied are:

Ualimentation = VL + Vc         Eq. (1)

Energy supplied by the network = Energy 
consummed inthe circuit      Eq. (2)

Developing both equations for the case of 
fundamental ferroresonance and integrating 
equation (1) between a and b we have:

Ualim · d(ω · t) = VL · d(ω · t) + VC · d(ω · t)

b b b

a a a

and where:

VL · d(ω · t) =

b

a

________________

ω
Esat · 2 · √2

VC · d(ω · t) = V0 (b - a)

b

a

b - a = ____   _   ____

ω ω0

π π

given  m = ____

ω0

ω
   y  

 ω0 =
______  _  ______1 r1

2

L1C 4L1
2

we have:

Esat · 2√2 = ω · V0 (b - a)

Esat · 2√2 = ω · V0 (
____   _   ____

ω ω0

π π
 
)

Esat · 2√2 = V0 π ( 1 - ____

ω0

ω
 
)

Esat · 2√2 = V0 π ( 1 - m )

Eq. (3)

From equation (2) we deduce:

Energy supplied by the network:

ualim · i · dt

a

b'
Ec. (4)

Energy lost while commutation:

r1 · i
2 · dt

a

b'
Eq. (5)

While commutation we can assume:

ualim = V ^  = √2 · Ueff

since ω0 >> ω

Similarly,

i = Î · sen ω0 t

with b' = 0 and a = π

 › Fig. 4
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Charging and discharging current of C implies 
a charge which value is:

idt = 2 · C · V0

0

____

ω0

π

Supposing that i = Î · sen ω0t

 

____

ω0

π

Î · sen ω0 tdt = Î ·

0

____
ω0

2

That’s to say: 
 
Î · = 2 · C · V0

____
ω0

2

As: ω = m · ω0

 
Î = · C · V0

____

m

ω

Therefore: 

Î = =_______________ __________

_______m ·
1

ω ·C
m · Xc

V0 V0

The relation between the minimum voltage 
which (V ^), maintains the phenomenon, the 
voltage in the capacitor (V0) and the current 
while conmutation periods (Î) is obtained:

____

ω0

π ____

ω0

π

i·dt = r1 i2·dt

0 0

V ^

as i = Î · sen ω0t, we obtain

____

ω0

π ____

ω0

π

r1 · r1 Î
2 dt

0 0

Î2 sen2 ω0tdt =
2

1 - cos2ω0t__________________

____

ω0

π

= r1 Î
2 -

0

sen 2ωt____ ____

2 4ω
t 1

r1 Î
2 =- 0_____

2ω0

r1 Î
2 

 π________

2ω0

π

3. CALCULATIONS AND EQUATIONS

From another way:

0

i · dt = Q = 2 · C · V0

____

ω0

π

Supposing that V ^  remains constant along that 
semiperiod we have:

____

ω0

π

0

i · dt = V  ^  · Q = V ^  · 2 · C · V0V ^

Equalling both terms:

V ^  · 2 · C · V0 =
________

2 ω0

r1 Î
2π

As

2 · C · V0 =
________

ω0

Î · 2

we have

=V ^  · ___________

2 · ω0

r1 · Î
2 ·  π______

ω0

Î· 2

that’s to say:

V ^  = ___________

4
r1 · Î

 ·  π

As  
 

____

m
ω

Î =  · C · V0   
y
   

V0 = ___________

π· (1-m)
Esat · 2√2

we have:

V ^  = 
_______________________________

m · 4 · π · (1-m)

r1 · ω · C · Esat · 2√2 · π

that’s to say:

V ^  = = _________________________ _____________________

2m · (1-m) 2 · Xc · m · (1-m)

r1 · ω · C · Esat · √2 r1 · Esat · √2

As V ^  = Ue�  . √2 , then:

=
r1

Ue� ________________________________

2 · Xc · m · (1-m)Esat

Ec. (7)

where  
 

____
ω
ω0

m = 
 
 ,
 

_______
1

ω · C
Xc = 

Esat = saturation voltage of the self-inductance 
at 50 Hz.
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3. CALCULATIONS AND EQUATIONS

The infl uence of the losses in the self-
inductance core can be represented by 
means of a resistor R in parallel with the non-
saturated self-inductance Lm (fi g.5).

The equation which has to be fulfi lled with at 
any ferroresonance condition is as follows:

Energy supplied by the network = Energy 
lost in r1 + Energy lost in R        

Eq.(8)

Equation 8 is developed in the same way as 
the previous cases, with the only di� erence 
that the term "Energy lost in R" is obtained 
as the discharge from C through R when the
self-inductance value is L = Lm.

Since the voltage in the capacitor falls from V1 
to V2 we have a lost energy of value equal to:

 · C · ( V1
2  -  V2

2 )____

2
1

Besides in the charge-discharge process of C 
from V2 to V1 we have:

____

ω0

π

i·dt = Q = ( V1 + V2 ) · C

0

and this is equal to:

 = C · ( V1 + V2 )
_______

ω0

Î · 2

Therefore the feeding voltage increase Û 
needed to maintain the ferroresonance will 
be:

 = Û·C·(V1 + V2) = Û · _______

ω0

Î · 2
 ·C·(V1

2 - V2
2 )____

2
1

That’s to say:

Û =  · ( V1 - V2)
____

2
1

Or

Ûeff =
V1 - V2__________

2 √2

being

2 √2 · EsatV1 - V2 = ______________

ω · C · R

so

= =
1______________

ω · C · R

Ûeff

Esat

________ ____

R
Xc

Ec. (9)

Therefore, if we want to take into account the 
losses in the self-inductance, we have to add 
to the second term of equation (7) the second 
term of equation (9).

 › Fig. 5
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4. RESULTS OF TESTS ON CIRCUITS  
 IN FUNDAMENTAL
 FERRORESONANCE

5. REFERENCES

The following experiments have been carried 
out on the circuit shown in fi gure 5, making it 
go into ferroresonance by raising the supply 
voltage. Afterwards the voltage supply is 
slowly reduced and the e� ective voltage 
at which the phenomenon disappears is 
measured. The obtained results appear in 
table 1.

[1] Cahen, F.: Electrotechnique, Gauthier-
Villars, 1963.

[2] Mahy, P.: Contribution theorique et 
experimentale à l’etude des phènomènes 
de ferrorresonance monophasée, SRBE, 
1972.

Table 1

Circuit Parameters Feeding Voltage

r1 0hm L1x10-3H R 0hm Cx10-6F CALCULATED MEASURED

2.85 6.54 230 80 12.68 10.6

2.85 6.54 230 180 14.56 14.05

2.85 6.54 230 240 19.96 16.5

2.85 6.54 230 300 19.81 19.8

2.85 6.54 230 360 23.08 23.7

2.85 6.54 66 80 33.06 32

2.85 6.54 66 180 23.62 24.2

2.85 6.54 66 240 23.75 24.5

2.85 6.54 66 300 25.24 25.6

2.85 6.54 66 360 27.6 27.4



www.arteche.com ©ARTECHE

Moving together

ARTECHE_CF_Ferro_EN
Version: A0


